11 research outputs found

    Obstacles, Interfacial Forms, and Turbulence: A Numerical Analysis of Soil–Water Evaporation Across Different Interfaces

    Get PDF
    AbstractExchange processes between a turbulent free flow and a porous media flow are sensitive to the flow dynamics in both flow regimes, as well as to the interface that separates them. Resolving these complex exchange processes across irregular interfaces is key in understanding many natural and engineered systems. With soil–water evaporation as the natural application of interest, the coupled behavior and exchange between flow regimes are investigated numerically, considering a turbulent free flow as well as interfacial forms and obstacles. Interfacial forms and obstacles will alter the flow conditions at the interface, creating flow structures that either enhance or reduce exchange rates based on their velocity conditions and their mixing with the main flow. To evaluate how these interfacial forms change the exchange rates, interfacial conditions are isolated and investigated numerically. First, different flow speeds are compared for a flat surface. Second, a porous obstacle of varied height is introduced at the interface, and the effects the flow structures that develop have on the interface are analyzed. The flow parameters of this obstacle are then varied and the interfacial exchange rates investigated. Next, to evaluate the interaction of flow structures between obstacles, a second obstacle is introduced, separated by a varied distance. Finally, the shape of these obstacles is modified to create different wave forms. Each of these interfacial forms and obstacles is shown to create different flow structures adjacent to the surface which alter the mass, momentum, and energy conditions at the interface. These changes will enhance the exchange rate in locations where higher velocity gradients and more mixing with the main flow develop, but will reduce the exchange rate in locations where low velocity gradients and limited mixing with the main flow occur

    Numerical Study on the Damage of a Carbon Woven Composite Panel Subjected to Blast Loading

    Get PDF
    Blast loading represents a critical dynamic condition for engineering structures. While the response of metal materials to such a condition has been studied in detail, the behavior of composites has not been properly addressed yet. In this context, this work leverages numerical methods to assess the damage that occurs in a carbon-fiber-reinforced polymer plate subjected to close-range blast loading. Numerical analyses were carried out using two methods, i.e., the pure Lagrangian and hybrid coupled Eulerian-Lagrangian approaches. The simulations were validated against observations from a benchmark experimental test taken from the literature. The results showed that (i) the hybrid approach seems to be the most promising solution in terms of efficiency and accuracy; (ii) the Lagrangian approach can accurately reproduce the experimental observations, even though it comes with strong limitations; and (iii) the numerically predicted damage adheres to the experimentally observed damage, although the simulation outcome is influenced by the modeling technique used to describe the behavior of the composite material. We consider the approaches presented in this paper promising for investigation of blast-loaded composite structures, and further improvements can be achieved by (i) refining the description of the material behavior, e.g., by including the strain rate sensitivity; and (ii) better modeling the boundary conditions

    Report from the second cytomegalovirus and immunosenescence workshop.

    Get PDF
    The Second International Workshop on CMV & Immunosenescence was held in Cambridge, UK, 2-4th December, 2010. The presentations covered four separate sessions: cytomegalovirus and T cell phenotypes; T cell memory frequency, inflation and immunosenescence; cytomegalovirus in aging, mortality and disease states; and the immunobiology of cytomegalovirus-specific T cells and effects of the virus on vaccination. This commentary summarizes the major findings of these presentations and references subsequently published work from the presenter laboratory where appropriate and draws together major themes that were subsequently discussed along with new areas of interest that were highlighted by this discussion.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Experimental study on the low-velocity impact response of inter-ply S2-glass/aramid woven fabric hybrid laminates

    No full text
    This paper presents an experimental evaluation of the effect of hybridization and stacking sequence on the low-velocity impact response of aramid/S2-glass/epoxy hybrid laminates. Plain-weave Kevlar ®29 and satin S2-glass fabrics were used and the laminates were manufactured by vacuum infusion moulding. Eight laminate configurations were studied, including two single-fibre samples (pure aramid or pure S2-glass) and six interply hybrids. Low-velocity impact tests were performed with three different impact energies (19 J, 37 J, 72 J) and significant variations in impact behaviour were observed among the laminates. Response Surface Methodology (RSM) was employed to investigate the effect of hybridization on impact performance, focusing on greater absorbed energy and smaller back face deformation. Hybridization led to significant changes in failure morphology and the combination of aramid and S2-glass laminates enhanced the impact performance, especially for up to 49.5 J impact energy, while the pure S2-glass laminate performed better for higher impact energies

    Calcium metabolism and vitamin D in the extreme longevity.

    No full text
    Skeletal remodelling is a continuous process during life and is still active also in extreme senescence. In the elderly, bone resorption often prevails over bone formation, causing bone loss and fragility. Elderly subjects are exposed to the risk of fractures, and loss of self-sufficiency, if considering that the proximal femur is the most frequently involved site. Bone remodelling can maintain circulating calcium within physiological ranges, at the expense of a substantial loss of this ion from the skeleton, particularly during senescence. Calcium metabolism is regulated at cellular/molecular level by a network of cytokines, growth factors, systemic hormones that act on bone in paracrine/autocrine/systemic fashion. Among the molecules involved in bone metabolism, parathyroid hormone (PTH) and vitamin D present some peculiar aspects during senescence. The osteometabolic features in a consistent group of centenarians have been evaluated. It results that a severe hypovitaminosis D was present in 99 out of 104 centenarians (25-OH vitamin D below 5 nmol/L), and that it plays an important role as a factor inducing a vicious circle involving hypocalcemia, secondary hyperparathyroidism, together with biochemical features indicating a consistent bone loss. Serum C-terminal cross-linking telopeptide, a specific marker of bone resorption was elevated in 92% of these subjects. Moreover, it has been found that several femoral fractures had occurred after 90 years of age. These data offer a rational for the possible prevention of elevated bone turnover, bone loss and consequently the reduction of osteoporotic fractures and fractures-induced disability, in the oldest olds, through the simple supplementation with calcium and vitamin D

    T lymphocyte proliferative capability to defined stimuli and costimulatory CD28 pathway is not impaired in healthy centenarians

    No full text
    It is generally assumed that T cell proliferation is impaired in aged individuals. We report data on the proliferative capability of peripheral blood mononuclear cells (PBMC) and T lymphocytes from 40 healthy people of different ages, (19-107 years), including 14 centenarians, to defined mitogenic stimuli. We observed no age-related proliferative impairment both in PBMC and in purified T cells stimulated by anti-CD3 mAb or phorbol myristate acetate (PMA). Furthermore, T cells stimulated by anti-CD3 mAb or PMA and costimulated by CD28 mAb did not proliferate differently among young, middle aged subjects and centenarians. Thus, short term T cell proliferation is not affected even at extreme age when well defined stimuli are used on cells deriving from carefully selected healthy subjects

    Report from the second cytomegalovirus and immunosenescence workshop

    No full text
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.International audienceThe Second International Workshop on CMV & Immunosenescence was held in Cambridge, UK, 2-4th December, 2010. The presentations covered four separate sessions: cytomegalovirus and T cell phenotypes; T cell memory frequency, inflation and immunosenescence; cytomegalovirus in aging, mortality and disease states; and the immunobiology of cytomegalovirus-specific T cells and effects of the virus on vaccination. This commentary summarizes the major findings of these presentations and references subsequently published work from the presenter laboratory where appropriate and draws together major themes that were subsequently discussed along with new areas of interest that were highlighted by this discussion

    New advances in CMV and immunosenescence.

    Get PDF
    Immunosenescence, defined as the age-associated dysregulation and dysfunction of the immune system, is characterized by impaired protective immunity and decreased efficacy of vaccines. An increasing number of immunological, clinical and epidemiological studies suggest that persistent Cytomegalovirus (CMV) infection is associated with accelerated aging of the immune system and with several age-related diseases. However, current evidence on whether and how human CMV (HCMV) infection is implicated in immunosenescence and in age-related diseases remains incomplete and many aspects of CMV involvement in immune aging remain controversial. The attendees of the 4th International Workshop on "CMV & Immunosenescence", held in Parma, Italy, 25-27th March, 2013, presented and discussed data related to these open questions, which are reported in this commentary.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore